Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(2): e0011993, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408129

RESUMO

Spotted fever group rickettsiae are tick-borne obligate intracellular bacteria that infect microvascular endothelial cells. Humans and mammalian infection results in endothelial cell barrier dysfunction and increased vascular permeability. We previously demonstrated that treatment of Rickettsia parkeri-infected cells with the calcium channel blocker benidipine significantly delayed vascular barrier permeability. Thus, we hypothesized that benidipine, known to be safe and effective for other clinical processes, could reduce rickettsia-induced vascular permeability in vivo in an animal model of spotted fever rickettsiosis. Based on liver, lung and brain vascular FITC-dextran extravasation studies, benidipine did not reliably impact vascular permeability. However, it precipitated a deleterious effect on responses to control sublethal R. parkeri infection. Animals treated with benidipine alone had no clinical signs or changes in histopathology and splenic immune cell distributions. Benidipine-treated infected animals had marked increases in tissue and blood bacterial loads, more extensive inflammatory histopathologic injury, and changes in splenic architecture and immune cell distributions potentially reflecting diminished Ca2+ signaling, reduced innate immune cell activation, and loss of rickettsial propagation control. Impaired T cell activation by R. parkeri antigen in the presence of benidipine was confirmed in vitro with the use of NKT cell hybridomas. The unexpected findings stand in stark contrast to recent discussions of the benefits of calcium channel blockers for viral infections and chronic infectious or inflammatory diseases. A role for calcium channel blockers in exacerbation of human rickettsiosis and acute inflammatory infections should be evaluated by a retrospective review of patient's outcomes and medications.


Assuntos
Di-Hidropiridinas , Infecções por Rickettsia , Rickettsia , Rickettsiose do Grupo da Febre Maculosa , Humanos , Camundongos , Animais , Modelos Animais de Doenças , Bloqueadores dos Canais de Cálcio , Células Endoteliais/patologia , Infecções por Rickettsia/microbiologia , Rickettsia/fisiologia , Rickettsiose do Grupo da Febre Maculosa/patologia , Imunidade Inata , Mamíferos
2.
Structure ; 31(4): 480-491.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931276

RESUMO

Monoclonal antibody L9 recognizes the Plasmodium falciparum circumsporozoite protein (PfCSP) and is highly protective following controlled human malaria challenge. To gain insight into its function, we determined cryoelectron microscopy (cryo-EM) structures of L9 in complex with full-length PfCSP and assessed how this recognition influenced protection by wild-type and mutant L9s. Cryo-EM reconstructions at 3.6- and 3.7-Å resolution revealed L9 to recognize PfCSP as an atypical trimer. Each of the three L9s in the trimer directly recognized an Asn-Pro-Asn-Val (NPNV) tetrapeptide on PfCSP and interacted homotypically to facilitate L9-trimer assembly. We analyzed peptides containing different repeat tetrapeptides for binding to wild-type and mutant L9s to delineate epitope and homotypic components of L9 recognition; we found both components necessary for potent malaria protection. Last, we found the 27-residue stretch recognized by L9 to be highly conserved in P. falciparum isolates, suggesting the newly revealed complete L9 epitope to be an attractive vaccine target.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária , Humanos , Epitopos , Microscopia Crioeletrônica , Plasmodium falciparum , Anticorpos Antiprotozoários , Proteínas de Protozoários/genética , Proteínas de Protozoários/química
3.
Cell ; 185(23): 4317-4332.e15, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36302380

RESUMO

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells. Using a self-assembling nanoparticle vaccine that links tumor antigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we treated tumor-bearing mice subcutaneously (SNP-SC) or intravenously (SNP-IV). Both routes generated antigen-specific CD8+ T cells that infiltrated tumors. However, only SNP-IV mediated tumor regression, dependent on systemic type I interferon at the time of boost. Single-cell RNA-sequencing revealed that intratumoral monocytes expressing an immunoregulatory gene signature (Chil3, Anxa2, Wfdc17) were reduced after SNP-IV boost. In humans, the Chil3+ monocyte gene signature is enriched in CD16- monocytes and associated with worse outcomes. Our results show that the generation of tumor-specific CD8+ T cells combined with remodeling of the TME is a promising approach for tumor immunotherapy.


Assuntos
Vacinas Anticâncer , Microambiente Tumoral , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunoterapia/métodos , Antígenos de Neoplasias , Vacinação/métodos , Adjuvantes Imunológicos
4.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736810

RESUMO

The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Anticorpos Antiprotozoários , Antimaláricos/farmacologia , Microscopia Crioeletrônica , Humanos , Plasmodium falciparum , Proteínas de Protozoários , Saccharomyces cerevisiae/genética
5.
Cell Rep ; 38(7): 110367, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172158

RESUMO

L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. Understanding this mAb's ontogeny and mechanisms of binding PfCSP will facilitate vaccine development. Here, we isolate mAbs clonally related to L9 and show that this B cell lineage has baseline NVDP affinity and evolves to acquire NANP reactivity. Pairing the L9 kappa light chain (L9κ) with clonally related heavy chains results in chimeric mAbs that cross-link two NVDPs, cross-react with NANP, and more potently neutralize sporozoites in vivo compared with their original light chain. Structural analyses reveal that the chimeric mAbs bound minor repeats in a type-1 ß-turn seen in other repeat-specific antibodies. These data highlight the importance of L9κ in binding NVDP on PfCSP to neutralize sporozoites and suggest that PfCSP-based immunogens might be improved by presenting ≥2 NVDPs.


Assuntos
Anticorpos Monoclonais/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/metabolismo , Sequências Repetitivas de Aminoácidos , Adolescente , Adulto , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/isolamento & purificação , Linhagem da Célula , Culicidae/parasitologia , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Moleculares , Testes de Neutralização , Peptídeos/química , Peptídeos/metabolismo , Plasmodium falciparum/imunologia , Ligação Proteica , Adulto Jovem
6.
PLoS Pathog ; 17(12): e1010133, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871332

RESUMO

Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.


Assuntos
Anticorpos Monoclonais/imunologia , Imunização Passiva/métodos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Humanos , Malária Falciparum/prevenção & controle , Camundongos , Esporozoítos/imunologia
7.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788599

RESUMO

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Assuntos
Subpopulações de Linfócitos B/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia , Vacinas de DNA/imunologia , Transferência Adotiva , Animais , Anticorpos Antiprotozoários/metabolismo , Modelos Animais de Doenças , Epitopos/genética , Engenharia Genética , Humanos , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos , Camundongos SCID , Proteínas de Protozoários/genética , Relação Estrutura-Atividade , Vacinação
8.
Sci Transl Med ; 13(599)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162751

RESUMO

Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.


Assuntos
Anticorpos Antiprotozoários , Imunoglobulina A , Malária , Animais , Anticorpos Antiprotozoários/imunologia , Humanos , Imunoglobulina A/imunologia , Malária/imunologia , Camundongos , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos
9.
Vaccines (Basel) ; 9(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803622

RESUMO

The most advanced malaria vaccine, RTS,S, includes the central repeat and C-terminal domains of the Plasmodium falciparum circumsporozoite protein (PfCSP). We have recently isolated human antibodies that target the junctional region between the N-terminal and repeat domains that are not included in RTS,S. Due to the fact that these antibodies protect against malaria challenge in mice, their epitopes could be effective vaccine targets. Here, we developed immunogens displaying PfCSP junctional epitopes by genetic fusion to either the N-terminus or B domain loop of the E2 protein from chikungunya (CHIK) alphavirus and produced CHIK virus-like particles (CHIK-VLPs). The structural integrity of these junctional-epitope-CHIK-VLP immunogens was confirmed by negative-stain electron microscopy. Immunization of these CHIK-VLP immunogens reduced parasite liver load by up to 95% in a mouse model of malaria infection and elicited better protection than when displayed on keyhole limpet hemocyanin, a commonly used immunogenic carrier. Protection correlated with PfCSP serum titer. Of note, different junctional sequences elicited qualitatively different reactivities to overlapping PfCSP peptides. Overall, these results show that the junctional epitopes of PfCSP can induce protective responses when displayed on CHIK-VLP immunogens and provide a basis for the development of a next generation malaria vaccine to expand the breadth of anti-PfCSP immunity.

10.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33332286

RESUMO

CIS43 is a potent neutralizing human mAb that targets a highly conserved "junctional" epitope in the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). Enhancing the durability of CIS43 in vivo will be important for clinical translation. Here, 2 approaches were used to improve the durability of CIS43 in vivo while maintaining potent neutralization. First, the Fc domain was modified with the LS mutations (CIS43LS) to increase CIS43 binding affinity for the neonatal Fc receptor (FcRn). CIS43LS and CIS43 showed comparable in vivo protective efficacy. CIS43LS had 9- to 13-fold increased binding affinity for human (6.2 nM versus 54.2 nM) and rhesus (25.1 nM versus 325.8 nM) FcRn at endosomal pH 6.0 compared with CIS43. Importantly, the half-life of CIS43LS in rhesus macaques increased from 22 days to 39 days compared with CIS43. The second approach for sustaining antibody levels of CIS43 in vivo is through adeno-associated virus (AAV) expression. Mice administered once with AAV-expressing CIS43 had sustained antibody levels of approximately 300 µg/mL and mediated protection against sequential malaria challenges up to 36 weeks. Based on these data, CIS43LS has advanced to phase I clinical trials, and AAV delivery provides a potential next-generation approach for malaria prevention.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Anti-Idiotípicos/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacocinética , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Antiprotozoários/administração & dosagem , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/genética , Dependovirus/genética , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Macaca mulatta , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Proteínas de Protozoários/imunologia
11.
Immunity ; 53(4): 733-744.e8, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32946741

RESUMO

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antimaláricos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Linhagem Celular , Linhagem Celular Tumoral , Epitopos/imunologia , Feminino , Células HEK293 , Hepatócitos/imunologia , Hepatócitos/parasitologia , Humanos , Fígado/imunologia , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
12.
J Am Assoc Lab Anim Sci ; 47(6): 56-60, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19049255

RESUMO

Despite several published methods of inducing surgical anesthesia in guinea pigs, viable methods of anesthesia for blood collection from the vena cava are inadequate. We compared 5 anesthesia regimens and their efficacy in inducing anesthesia for blood sampling in guinea pigs: ketamine-xylazine (30 and 2.5 mg/kg) administered subcutaneously, intramuscularly, or intraperitoneally; pentobarbital (37 mg/kg) administered intraperitoneally; and medetomidine (0.5 mg/kg) administered intramuscularly. Parameters measured included time to onset of anesthesia, time to recovery from anesthesia, and complete blood count (CBC) and serum chemistry values. CBC values did not differ among the 5 regimens, but serum glucose, BUN, phosphorous, and creatine phosphokinase levels varied among groups. Based on our data, intraperitoneal ketamine-xylazine appears to emerge as a preferable injectable anesthetic regimen in guinea pigs for blood collection from the anterior vena cava.


Assuntos
Anestésicos/administração & dosagem , Coleta de Amostras Sanguíneas/veterinária , Veias Cavas , Analgésicos/administração & dosagem , Anestesia/veterinária , Animais , Coleta de Amostras Sanguíneas/métodos , Feminino , Cobaias , Injeções Intramusculares , Injeções Intraperitoneais , Injeções Subcutâneas , Ketamina/administração & dosagem , Medetomidina/administração & dosagem , Xilazina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...